
DOI: 10.1126/science.1207143
, 199 (2011);333 Science

 et al.A. J. Levan
a Distant Galaxy
An Extremely Luminous Panchromatic Outburst from the Nucleus of

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): April 7, 2014 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/333/6039/199.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2011/06/15/science.1207143.DC1.html 
can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/333/6039/199.full.html#related
found at:

can berelated to this article A list of selected additional articles on the Science Web sites 

 http://www.sciencemag.org/content/333/6039/199.full.html#ref-list-1
, 9 of which can be accessed free:cites 67 articlesThis article 

 http://www.sciencemag.org/content/333/6039/199.full.html#related-urls
26 articles hosted by HighWire Press; see:cited by This article has been 

 http://www.sciencemag.org/cgi/collection/astronomy
Astronomy

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2011 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

A
pr

il 
7,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
A

pr
il 

7,
 2

01
4

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

A
pr

il 
7,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
A

pr
il 

7,
 2

01
4

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

A
pr

il 
7,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/333/6039/199.full.html
http://www.sciencemag.org/content/333/6039/199.full.html
http://www.sciencemag.org/content/suppl/2011/06/15/science.1207143.DC1.html 
http://www.sciencemag.org/content/333/6039/199.full.html#related
http://www.sciencemag.org/content/333/6039/199.full.html#related
http://www.sciencemag.org/content/333/6039/199.full.html#ref-list-1
http://www.sciencemag.org/content/333/6039/199.full.html#ref-list-1
http://www.sciencemag.org/content/333/6039/199.full.html#related-urls
http://www.sciencemag.org/content/333/6039/199.full.html#related-urls
http://www.sciencemag.org/cgi/collection/astronomy
http://www.sciencemag.org/cgi/collection/astronomy
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


An Extremely Luminous Panchromatic
Outburst from the Nucleus of a
Distant Galaxy
A. J. Levan,1* N. R. Tanvir,2 S. B. Cenko,3 D. A. Perley,3 K. Wiersema,2 J. S. Bloom,3

A. S. Fruchter,4 A. de Ugarte Postigo,5 P. T. O’Brien,2 N. Butler,3 A. J. van der Horst,6

G. Leloudas,5 A. N. Morgan,3 K. Misra,4 G. C. Bower,3 J. Farihi,2 R. L. Tunnicliffe,1 M. Modjaz,7

J. M. Silverman,3 J. Hjorth,5 C. Thöne,8 A. Cucchiara,3 J. M. Castro Cerón,9 A. J. Castro-Tirado,8

J. A. Arnold,10 M. Bremer,11 J. P. Brodie,10 T. Carroll,12 M. C. Cooper,13 P. A. Curran,14

R. M. Cutri,15 J. Ehle,12 D. Forbes,16 J. Fynbo,5 J. Gorosabel,8 J. Graham,4,17 D. I. Hoffman,15

S. Guziy,8 P. Jakobsson,19 A. Kamble,20 T. Kerr,12 M. M. Kasliwal,18 C. Kouveliotou,21

D. Kocevski,10 N. M. Law,22 P. E. Nugent,3,23 E. O. Ofek,18 D. Poznanski,3,23 R. M. Quimby,18

E. Rol,24 A. J. Romanowsky,10 R. Sánchez-Ramírez,8 S. Schulze,19 N. Singh,10,25 L. van Spaandonk,1,26

R. L. C. Starling,2 R. G. Strom,24,27 J. C. Tello,8 O. Vaduvescu,28 P. J. Wheatley,1 R. A. M. J. Wijers,24

J. M. Winters,11 D. Xu29

Variable x-ray and g-ray emission is characteristic of the most extreme physical processes in
the universe. We present multiwavelength observations of a unique g-ray–selected transient
detected by the Swift satellite, accompanied by bright emission across the electromagnetic
spectrum, and whose properties are unlike any previously observed source. We pinpoint the
event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy
emission has lasted much longer than any g-ray burst, whereas its peak luminosity was
∼100 times higher than bright active galactic nuclei. The association of the outburst with the
center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism
involving the massive black hole in the nucleus of that galaxy.

Surveys of the sky at short wavelengths
(x-ray and g-ray) reveal a much more dy-
namic universe than is seen in the optical

wavelengths. Many sources vary substantially;
the most extreme can go from invisibility to
being the brightest objects in the sky, some-
times on time scales of seconds. The sources of
such bursts of high-energy radiation have prov-
en difficult to trace, but dedicated observation-
al programs have shown that some fraction
originate in theMilkyWay, either from isolated
neutron stars with intense magnetic fields (1) or
from binary systems containing neutron stars
and black holes (2). Some long-lived but variable
x-ray and g-ray emissions originate in active gal-
axies (3), whereas the brightest are the long-
duration g-ray bursts (long-GRBs), which are
detected at a rate of approximately two per week
by current missions such as the Swift satellite (4)
and are now thought to originate from the col-
lapse ofmassive stars in the distant universe (5, 6).

GRB 110328A/Swift J164449.3+573451 (here-
after Sw 1644+57) was detected with the Swift
Burst Alert Telescope (BAT) at 12:57:45 UT on
28 March 2011 (7). It required an unusually long
integration, in excess of 1000 s, to trigger the in-
strument because of its slow variability time scale.
Follow-up observations with the Ultraviolet and
Optical Telescope (UVOT) andX-Ray Telescope
(XRT) onboard the Swift satellite began 1475 s
after the initial outburst. No source was seen in
the UVOTobservations, but a bright point source
was found with the XRT (7). Unlike any previ-
ously observed long-GRBs (which typically de-
cline substantially on a time scale of minutes),

Sw 1644+57 remained bright and highly varia-
ble for a prolonged period and went on to re-
trigger the BATon three further occasions over
the next 48 hours (8). Reexamination of previ-
ous g-ray observations of this region showed that
the source appears to have been present a few
days before the initial trigger but not at earlier
times (9). Equally unlike any normal long-GRB,
the source remained bright in the x-rays for more
than 2 weeks (Fig. 1). The early x-ray behavior
showed the same dramatic flaring seenwith BAT,
with flares having time scales of hours and with
broadly similar shapes. After the first 48 hours,
the x-rays maintained a more constant level, albeit
with episodic brightening and fading spanning
more than an order of magnitude in flux.

Our first ground-based observations of Sw
1644+57 began approximately 2 hours after the
burst trigger, with the Gemini-North Telescope in
Hawaii. Unfortunately, poor weather conditions
meant that only shallow observations were pos-
sible, and these did not yield any candidate op-
tical counterpart to a limit of r ∼ 22.1 magnitude.
At 13 hours after the trigger, we obtained im-
aging with the Nordic Optical Telescope (NOT)
on La Palma, which revealed a R ≈ 22.5 mag-
nitude source that was consistent with the x-ray
position (10). Examination of archival images
obtained with the Palomar Transient Factory
(PTF) revealed this source to be present at ap-
proximately the same brightness more than a
year before the outburst. Our subsequent optical
monitoring (below) confirms that the optical
flux is dominated by the host galaxy. Early anal-
ysis of the x-ray/g-ray data was used to argue

that the transient was most likely a source within
the Milky Way (11). However, our spectroscopy
of the optical counterpart with Gemini-North
(12), the Gran Telescopio Canarias (GTC) in
La Palma (13), and theKeck Telescope in Hawaii
(14) [supplementary online material (SOM) text]
showed strong emission lines of hydrogen and
oxygen (as well as absorption lines from a mod-
erate age stellar population), which is consistent
with a star-forming galaxy at a systemic redshift
of z = 0.3534 T 0.0002 (Fig. 2). Thus, Sw 1644+57
is a source at cosmological distance with extreme-
ly unusual properties.

We continued to monitor the field from the
ground in the optical and near-infrared (near-IR)
with Gemini-North, the UK Infrared Telescope
(UKIRT), the NOT, the William Herschel Tele-
scope (WHT), PAIRITEL, the Telescopio Nazionale
Galileo (TNG), and GTC, obtaining observations
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from the B band (435 nm) to the L band (3780
nm). In contrast to the non-varying behavior in
the optical, these data showed that at near-IR
wavelengths the source fluctuated by more than
a factor of 3 in flux over several days, indicating
that the g-ray transient was also producing con-
siderable longer-wavelength emission. Our detec-
tion in the L band [270 T 50 microjansky (mJy)],
compared with quiescent limits from the WISE
satellite, implies that the transient is at least an
order of magnitude brighter than its host galaxy
at these wavelengths. The IR variations roughly
track those of the x-ray (Fig. 1) but are certainly
not perfectly correlated, suggestingmultiple emis-
sion components.

We obtained an observation with the Chandra
X-ray Observatory, which took place about 6.5
days after the initial outburst (Fig. 1). This showed
that the x-ray emission continued to exhibit a
factor of ∼2 changes in flux on time scales as
short as ∼100 s even at this comparatively late
time after the early flaring. However, our pho-
tometry of individual optical and near-IR im-
ages (with a time resolution of 20 to 60 s) does
not reveal rapid variability in the near-IR light.
In the optical r band, little variability was seen
(<10%) on all time scales, indicating that the host
galaxy dominates the optical emission. The tran-

Fig. 1. The x-ray, IR, and radio lightcurves of Sw
1644+57. (Top) The XRT (0.3 to 10 keV; red) and
BAT (15 to 50 keV; black) flux against observed
time since the initial outburst trigger time; the
right hand axis indicates the luminosity of the
event. (Inset) The dense sampling of our Chandra
observation. The dashed blue vertical lines indi-
cate the times of subsequent triggers of the BAT.
(Middle) Our near-IR lightcurve of this event (host
flux not subtracted). (Bottom) Our 4.8- and 1.4-GHz
lightcurve’s obtained from theWSRT showa rising radio
flux. The left-hand panels represent pre-outburst
observations of the location of Sw 1644+57 and the
limits on transient emission at this time (24), in the
x-ray (ROSAT, 1991), IR (WISE, Jan 2010), and radio
(VLA FIRST, 1998). They clearly demonstrate the
large amplitude of this outburst in the x-ray and IR.

Fig. 2. Spectrum of the host galaxy of Sw 1644+57, obtained at the GTC. (Left inset) the Hb line as seen
in the first Gemini Multi Object Spectograph spectrum. Prominent stellar atmosphere absorption is visible.
(Right inset) The first Gemini spectrum (red), the second Gemini spectrum (blue), the Keck spectrum
(purple), and the GTC spectrum (black) covering the Hb and [O III] doublet, all rebinned to the lower
resolution of the GTC spectra. No emission line variability is apparent over the 3-day span of these
observations.
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sient has a very red optical near-IR color, prob-
ably because of a high dust column along the line
of sight. The dust hypothesis would be consistent
with the high hydrogen column density inferred
from the x-ray spectrum (1022 cm−2), which im-
plies host extinction of AV ∼ 6 (15), reducing the
optical luminosity by a factor of ≳100. Together,
these findings suggest that the source is situated
in a dense and dusty region, such as a galactic
nucleus (SOM text).

Observations at still longer wavelengths
showed a bright radio (16) and millimeter source
(17) at the same location. Our millimeter obser-
vations from the Institut de Radioastronomie
Millimétrique (IRAM) confirm this, and radio
(1.4. and 4.8GHz) observations fromWesterbork
Synthesis Radio Telescope (WSRT) show a
bright source, which in contrast to the optical
and IR light brightened over the first week after
the outburst (Fig. 1, bottom). These observations
demonstrate that Sw 1644+57 emitted strong
radiation across the electromagnetic spectrum,
whereas the differing behavior in each waveband
may be due to either strong spectral evolution or
distinct emission components.

The character of the host galaxy and the po-
sition of the transient within it are potentially im-
portant clues to the nature of Sw 1644+57, and
to this end, we obtained observations with the
Hubble Space Telescope (HST) on 4 April and
20 April 2011. In the near-IR, the image remains
unresolved, fading between the two epochs of
observation, and consistent with emission from
the transient still dominating. In the optical wave-
bands, we clearly detected the light of the host
galaxy. The Wide Field Camera 3 (WFC3) IR
position of the transient falls within 0.03 arc sec
(1 s, < 150 pc at z = 0.3534) of the center of
the host galaxy (Fig. 3). We also obtained Very
Long Baseline Array (VLBA) observations of
Sw 1644+57 on 1 April 2011. These provided
another precise astrometric position, with an
offset from the center of the host of 0.04 T 0.07
arc sec, further strengthening the association with
the nucleus of the host (18).

The host galaxy itself appears compact and
noninteracting, with a half-light radius in the op-
tical of rh = 1.04 kpc and an absolute magnitude
of MV = −18.19 (comparable in luminosity with
the Large Magellanic Cloud). Subtraction of a
point source from the HST F606W image sug-
gests an upper limit to the transient magnitude in
that band of 30% of the host light, or a magnitude
of 24.1 (AB). The measured ratios of emission
lines are consistent with an origin in a normal star-
forming galaxy that has not, at least until now, con-
tained an active nucleus. The inferred star formation
rate of the host is 0.5 solar mass (M⊙) yr

−1.
Our observations clearly show that the tran-

sient originates from the center of a galaxy at cos-
mological distances. At this redshift, the brightest
x-ray flare reached a luminosity of LX ∼ 3 ×
1048 erg s−1 (isotropic equivalent) for ∼1000 s.
The total energy output in the first ∼106 s after
the outburst of ∼1053 erg is equivalent to ∼10% of

Fig. 3. Discovery images of Sw 1644+57-and its host galaxy. (Top) Our ground-based imaging in the
optical r band (top left) and IR K-band (top right). The images are oriented north, up; east, left and are
approximately 1 arc min in height. The location of Sw 1644+57 is indicated with arrows. (Bottom)
Zoomed-in regions of our later time observations with HST in the IR (bottom right) and optical (bottom
left). The crosshair indicates the optically derived centroid of the host galaxy. The red circle shows the
location of the IR source inferred from our first epoch WFC IR observations, whereas the larger green
circle shows the offset (due to the systematic uncertainty in tying coordinate frames) from our very long
baseline interferometry position.

Fig. 4. The x-ray lumi-
nosity and optical/near-
IR absolute magnitude
of Sw 1644+57, at peak
(bold stars) and at 106 s
after the trigger. For com-
parison, we show the
properties of the most
luminous quasars and
blazars (3C 279 and Mrk
421); a sample of all ob-
jects within the 2XMM
survey with high confi-
dence (>2 s) association
with objects in the Sloan
Digital Sky Survey of
known redshift z<3 (25);
and a sample of more
local galaxies [from (26);
optical magnitudes in-
clude contribution from
the host galaxy]. We
also plot the late-time
luminosities of a sam-
ple of bright GRB af-
terglows [extrapolated
from (27, 28)], which
are relevant because
Sw 1644+57 stays within an order of magnitude of its brightest peak, even 106 s after the outburst
began. We also plot the location of the candidate tidal disruption event in RXJ 1242-119 (29).
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the rest energy of the Sun. Although these num-
bers are not abnormal for long-GRBs, the proper-
ties of this outburst are clearly distinct from the
long-GRB population. First, the repetition of the
g-ray trigger four times in 48 hours is unheard
of for long-GRBs, which are destructive and
non-repeating events. Further, the duration of
bright x-ray emission is much longer than has
ever been seen for any long-GRB (19, 20), per-
sisting at LX ∼ 1047 erg s−1 2 weeks after the
initial event. This, together with the origin in the
core of its host galaxy, implies that Sw 1644+57
most likely originates from the central massive
black hole. However, the x-ray luminosity of
Sw 1644+57 is well beyond the bright end of the
quasar luminosity function (21) and is more lu-
minous (by a factor of ∼100) than flares from the
brightest blazars (3). However, its optical lu-
minosity is a factor of ∼104 fainter than a bright
quasar (22), implying either different emission
processes or (as seems to be the case, owing to
the red color) a particularly high dust column
within the host. The overall energetics and long
duration, together with the order-of-magnitude
variations in flux over 100 s time scales, make it
clear that we are observing an unprecedented
astrophysical object (Fig. 4).

The peak luminosity corresponds to the
Eddington luminosity of a ∼1010 M⊙ black hole.
It is highly unlikely that a moderate-sized galaxy
such as the host of Sw 1644+57 could contain
such a massive black hole; our spectral energy
distribution fitting of the host galaxy implies
that its total stellar mass is less than this value
(SOM text and fig. S6), and for a typical stellar
mass–black hole mass relation (23), its black
hole mass is unlikely to be greater than ∼107M⊙.
Hence, Sw 1644+57 is either accreting at a super-
Eddington rate or has its total energymodified by
relativistic beaming (or both). Bloom et al. (24)
consider the possibility that the source of this
event is the tidal disruption of a star around the
central black hole.

The detection of a different class of extremely
energetic g-ray transient after many years of in-
tensive monitoring of the g-ray sky highlights the
rarity of this phenomenon. Although the bright
flares in Sw 1644+57 are of longer duration
than typical GRBs, it is likely that Swift would
have detected a similar event to at least z ∼ 0.7. If
we assume that galaxies within 1 magnitude of the
Sw 1644+57 host will typically contain similar-
mass black holes at their centers, then we can
estimate a space density of ∼5 × 107 Gpc−3 po-
tential hosts. Thus, a single example in 6.5 years
of Swift operations would correspond to a rate
per galaxy of 1 in 3 × fbeam gigayears, where we
allow for the possibility that the radiation is
beamed into a fraction fbeam of a sphere.

Although Sw 1644+57 was detected through
its g-ray emission, it is its behavior at x-ray and
IR wavelengths, lasting at a bright flux level for
days to weeks, that most strikingly demonstrates
its difference from known classes of high-energy
transient. This raises the possibility that similar

events that are rather less variable or less lumi-
nous could be occurring but have so far evaded
detection with existing satellites.
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